Autoimmune Thyroiditis in Patients with Myelopathy/Tropical Spastic Paraparesis and in HTLV-1 Carriers in Mashhad, Northeastern Iran

Morteza Taghavi, MD,* Seddigheh Fatemi, MD,** Hosein Ayatollahi,[†] Houshang Rafatpanah, PhD[‡]

*Assistant Professor of Endocrinology, Endocrine Research Center, Mashhad Medical University, mortezataghavi2003@yahoo.com and taghaviMR@mums.ac.ir ** Immunology Department, Bu Ali Research Center, Mashhad Medical University, fatemis1@mums.ac.ir * Assistant Professor of Pathology, Mashhad Medical University, hosseinayatollahih@mums.ac.ir * Immunology Department, Mashhad Medical University, Horary Research Assistant of the University of Manchester, rafatpanahh@mums.ac.ir

Contact: Dr. M. Taghavi mortezataghavi2003@yahoo.com

Received: October 17, 2008 Accepted: October 24, 2008

Abstract. There are some reports about the association of autoimmune thyroid diseases with human T-cell leukemia virus type-I (HTLV-I) infection. The objective of this study was to estimate the seroprevalence rates of antithyroid antibodies in HTLV-I carriers and HTLV-I-associated myelopathy/tropical spastic paraparesis (HAM/TSP) patients in Mashhad, northeastern Iran, in order to determine any association between HTLV-I infection and Hashimoto's thyroiditis (HT).

Methods: Forty-six HTLV-I infected patients (24 patients with HAM/TSP and 22 asymptomatic carriers) and 40 HTLV-I seronegative healthy individuals were screened for the presence of thyroid autoantibodies. The diagnosis of Hashimoto's thyroiditis was based on the presence of positive thyroid autoantibodies (anti-thyroid peroxidase and/or antithyroglobulin) and at least one of two additional criteria (hypothyroidism and/ or goiter). Analysis of the data was done using the Fisher-Exact test and SPSS statistical software version 13.0. Any P value below 0.05 was considered statistically significant.

Results: We found thyroid autoantibodies in 14 (63.6%) of 22 asymptomatic carriers, 6 (25%) of 24 patients with HAM/TSP, and 3 (7.5%) of 40 HTLV-I seronegative healthy individuals. We found Hashimoto's thyroiditis in 45.4% of asymptomatic carriers, 25% of HAM/TSP patients, and 5% of seronegative healthy individuals. The percentage of patients with Hashimoto's thyroiditis was significantly higher (P<0.01) than the percentage in healthy seronegative individuals.

Conclusion: This study demonstrates a high prevalence of Hashimoto's thyroiditis in the HAM/TSP patients and the HTLV-I carriers in Mashhad. Our findings suggest an association between HTLV-I infection and Hashimoto's thyroiditis in our region.

Keywords. Hashimoto's thyroiditis • HTLV-1 • Mashhad, Iran • Myelopathy/tropical spastic paraparesis • Thyroglobulin antibodies • Thyroid peroxidase antibodies

Introduction

Human T-cell leukemia virus type-I (HTLV-I) is a human retrovirus endemic in southern Japan, intertropical Africa, Melanesia, Latin America, and the Caribbean basin.^[1] HTLV-I is etiologically associated with adult T-cell leukemia^[2] and HTLV-I-associated myelopathy/tropical spastic paraparesis (HAM/ TSP).^{[3][4]} HTLV-I may also cause some other inflammatory disorders such as uveitis,^[5] chronic arthropathy,^[6] pulmonary alveolitis,^[7] and Sjögren's syndrome.^[8] The possible role of HTLV-I in thyroid diseases was initially raised by reports of Hashimoto's thyroiditis in HTLV-I carriers and patients with HAM/TSP.^{[9][10]} Graves' disease has also been observed in HTLV-I carriers.^{[11][12]} HTLV-I seropositivity has been a risk factor for thyroid disorders in epidemiological studies in Japan.^{[10][13][14][15]}

The possible pathogenic role of HTLV-I in thyroid diseases is supported by many findings: HTLV-I envelope protein and tax mRNA have been detected in follicular epithelial cells of the thyroid tissues of a patient with Hashimoto's thyroiditis;^[16] tax mRNA was also found in infiltrating lymphocytes in the interfollicular space;^[16] and HTLV-I proviral DNA and HTLV-I have been detected in the thyroid tissue of patients with Hashimoto's thyroiditis and Graves' disease.^{[16][17]}

The virus is also endemic in Mashhad in northeastern Iran.^[18] To our best knowledge, there has been no study in our region of the prevalence of Hashimoto's thyroiditis among HTLV-I carriers or among HAM/TSP patients. This study had two objectives: to estimate the seroprevalence rates of antithyroid antibodies in HTLV-I carriers and HAM/ TSP patients in Mashhad, and to determine whether we would find an association in the patients between Hashimoto's thyroiditis and HTLV-I.

Methods and Patients

Blood samples were collected from 46 HTLV-I infected patients, 22 asymptomatic carriers (13 females and 9 males, 22-70 years old, mean age: 42.58 \pm 14.49), and 24 patients with HAM/TSP (17 females and 7 males, 17-64 years old, mean age: 38.04 \pm 11.04). Forty HTLV-I seronegative healthy individuals (26 female and 14 males, 17-65 years old, mean age: 36.84 \pm 16.32) served as normal controls. The control subjects did not have a history of thyroid or autoimmune diseases.

The diagnosis of Hashimoto's thyroiditis was based on the presence of positive thyroid autoantibodies, thyroid peroxidase (TPO) and/or thyroglobulin (Tg), and at least one of two additional criteria: hypothyroidism and/or goiter. Antibodies to TPO and Tg were determined by RIA (Aeskalisa a-TPO, Orgentec Diagnostica, Germany). Diagnosis of HAM/TSP was based on the World Health Organization diagnosis guidelines.^[19] All patients (HTLV-I asymptomatic carriers and those with HAM/TSP) and all HTLV-I-seronegative healthy controls were Iranians living in Mashhad (HTLV-I endemic city), the northeast area of Iran.

Statistical Analyses

Data were descriptively expressed as mean±SD or number and percent. Statistical analysis was done by using the Fisher-Exact test with statistical software SPSS version 13.0. Any P value below 0.05 was considered statistically significant. The Endocrine Research Committee of Mashhad University reviewed all aspects of the research and approved the protocol.

Results

Thyroid autoantibodies were positive in 14 (63.6%) of 22 asymptomatic carriers, 6 (25%) of 24 patients with HAM/TSP, and 3 (7.5%) of 40 HTLV-I seronegative healthy individuals. In the HTLV-I carrier groups, 4 patients had subclinical hypothyroidism and 6 patients had euthyroid firm goiter. In the HAM/TSP group, 4 patients had subclinical hypothyroidism and 2 patients had euthyroid firm goiter. Seronegative healthy individuals were euthyroid and 2 of them had firm goiter. Hashimoto's thyroiditis was found in 45.4% of asymptomatic carriers, 25% of HAM/TSP patients, and 5% of seronegative healthy individuals. Therefore, the percentage of patients with Hashimoto's thyroiditis was significantly higher (P<0.01) than the percentage in healthy seronegative individuals.

Discussion

HTLV-I is a human retrovirus endemic in some areas of the world.^[1] HAM/TSP is the major syndrome caused by HTLV-I, but the virus may also cause a systemic immune-mediated inflammatory disease involving many tissues including the thyroid gland. Correlation of autoimmune thyroid diseases and HTLV-I infection were investigated recently, and the role of HTLV-I in the pathogenesis of autoimmune thyroid diseases has been demonstrated in animals and humans.^{[20][21][22][23][24]}

Genetic factors including human leukocyte antigen and cytotoxic T lymphocyte antigen-4 (CTLA-4) are involved in autoimmune thyroid diseases.^{[25][26]} However, HTLV-I infection is not associated with CTLA-4 polymorphisms in either Hashimoto's thyroiditis patients or controls.^[27] HTLV-I infection, then, does not appear to be regulated by genetic factors, and it may cause Hashimoto's thyroiditis as an independent, purely environmental factor.

The HTLV-I proviral load is thought to be a major determinant of HTLV-I-associated diseases. The proviral load is higher in the peripheral blood of patients with HAM/TSP than in the blood of asymptomatic carriers.^[28] It is also higher in the peripheral blood of HTLV-I-infected patients with either Hashimoto's thyroiditis or Graves' disease than in

HTLV-I asymptomatic carriers.^[29] Similarly, patients with HTLV-I-associated uveitis and HTLV-I-sero-positive patients with arthritis or connective tissue disease have a higher proviral load than asymptomatic carriers.^{[30][31]}

Involvement of HTLV-I in the pathogenesis of autoimmune thyroid disease in Japan, where this retrovirus is endemic, has been extensively investigated. Kawai et al. reported that the prevalence of HTLV-I antibodies in Hashimoto's thyroiditis patients, residents of the Tokushima and Kochi prefectures in Japan, was 6.3%, which was significantly higher than the expected frequency of 2.2%.^[10]

Mizokami et al. also reported that the prevalence of HTLV-I antibodies was significantly higher in patients with either antithyroid antibody-positive chronic thyroiditis (7.4%) or Graves' disease (7%) than the expected frequency in Fukuoka prefecture, Japan.^[13] Mine et al. found that the frequency of antithyroid antibodies in blood donors with HTLV-I antibodies was significantly higher (7.9%) than that in control donors without the HTLV-I antibodies.^[14] Akamine et al. also found a high prevalence of positivity for thyroid autoantibodies in adult T-cell leukemia patients (40.4%) and HTLV-I carriers (30%).^[15]

Mashhad, a city in northeastern Iran, is also an endemic area for HTLV-I.^[18] The present study determined the seroprevalence rates of antithyroid antibodies in HTLV-I carriers and HAM/TSP patients for the first time in Iran. The study also provides data supporting the role of HTLV-I in the development of thyroid diseases in our region.

Hashimoto's thyroiditis was found in 45.4% of asymptomatic carriers of HTLV-I and 25% of HAM/ TSP patients. These percentages were significantly higher (P<0.01) than the percentage of Hashimoto's thyroiditis in healthy seronegative individuals (5%).

Conclusion

This study demonstrates a high prevalence of positivity for antithyroid autoantibodies and Hashimoto's thyroiditis in HAM/TSP patients and HTLV-I carriers in Mashhad. There is, then, an association between HTLV-I infection and Hashimoto's thyroiditis in our region.

References

1. Gessain, A.: Epidemiology of HTLV-I and associated diseases. In *Human T-cell Lymphotropic Virus Type*

I. Edited by P. Hollsberg and D.A. Hafler. Chichester, UK, John Wiley, Sons, 1996, pp. 33-64.

- Hinuma, Y., Nagata, K., Hanaoka, M., et al.: Adult Tcell leukemia: antigen in an ATL cell line and detection of antibodies to the antigen in human sera. *Proc. Natl. Acad. Sci. USA*, 78:6476-6480, 1981.
- Osame, M., Usuku, K., Izumo, S., et al.: HTLV-I associated myelopathy, a new clinical entity. *Lancet*, 1: 1031-1032, 1986.
- Gessain, A., Barin, F., Vernant, J.C., et al.: Antibodies to human T-lymphotropic virus type-I in patients with tropical spastic paraparesis. *Lancet*, 2:407-410, 1985.
- 5. Mochizuki, M., Yamaguchi, K., Takatsuki, K., et al.: HTLV-I and uveitis. *Lancet*, 339:1110, 1992.
- Nishioka, K., Maruyama, I., Sato, K., et al.: Chronic inflammatory arthropathy associated with HTLV-I. *Lancet*, 1:441, 1989.
- Sugimoto, M., Nakashima, H., Watanabe, S., et al.: Tlymphocyte alveolitis in HTLV-I-associated myelopathy, *Lancet*, 2:1220, 1987.
- Vernant, J.C., Buisson, G., Magdeleine, J., et al.: Tlymphocyte alveolitis, tropical spastic paresis, and Sjögren syndrome. *Lancet*, 1:177, 1988.
- 9. Kawai, H., Saito, M., Takagi, M., et al.: Hashimoto's thyroiditis in HTLV-I carriers. *Intern. Med.*, 31:1213-1216, 1992.
- Kawai, H., Inui, T., Kashiwagi, S., et al.: HTLV-I infection in patients with autoimmune thyroiditis (Hashimoto's thyroiditis). J. Med. Virol., 38:138-141, 1992.
- Yamaguchi, K., Mochizuki, M., Watanabe, T., et al.: Human T-lymphotropic virus type-I uveitis after Graves' disease. *Br. J. Ophthalmol.*, 78:163-166, 1994.
- Mizokami, T., Okamura, K., Kohno, T., et al.: Human T-lymphotropic virus type-I-associated uveitis in patients with Graves' disease treated with methylmercaptoimidazole. *J. Clin. Endocrinol. Metab.*, 80: 1904-1907, 1995.
- Mizokami, T., Okamura, K., Ikenoue, H., et al.: A high prevalence of human T-lymphotropic virus type-I carriers in patients with antithyroid antibodies. *Thyroid*, 4:415-419, 1994.
- Mine, H., Kawai, H., Yokoi, K., et al.: High frequencies of human T-lymphotropic virus type-I (HTLV-I) infection and presence of HTLV-II proviral DNA in blood donors with anti-thyroid antibodies. J. Mol. Med., 74:471-477, 1996.
- Akamine, H., Takasu, N., Komiya, I., et al.: Association of HTLV-I with autoimmune thyroiditis in patients with adult T-cell leukaemia (ATL) and in HTLV-I carriers. *Clin. Endocrinol.* (Oxf.), 45:461-466, 1996.
- 16. Kawai, H., Mitsui, T., Yokoi, K., et al.: Evidence of HTLV-I in thyroid tissue in an HTLV-I carrier with

Hashimoto's thyroiditis. J. Mol. Med., 74:275-278, 1996.

- Kubonishi, I., Kubota, T., Sawada, T., et al.: An HTLV-I carrier with Graves' disease followed by uveitis: isolation of HTLV-I from thyroid tissue. *Int. J. Hematol.*, 66:233-237, 1997.
- Abbaszadegan, M.R., Gholamin, M., Tabatabaei, A., et al.: Prevalence of human T-lymphotropic virus type-I among blood donors from Mashhad, Iran. J. *Clin. Microbiol.*, 41:2593-2595, 2003.
- Osame, M.: Review of WHO Kagoshima meeting and diagnostic guidelines for HAM/TSP. In *Human Retrovirology: HTLV*. Edited by W.A. Blattner, New York, Raven Press, 1990, pp. 191-197.
- Werner, J. and Gelderblom, H.: Isolation of foamy virus from patients with De Qurvain thyroiditis. *Lancet*, 2:258-259, 1979.
- Ciampolillo, A., Marini, V., Mirakian, R., et al.: Retrovirus-like sequences in Graves' disease: implications for human autoimmunity. *Lancet*, 1:1096-1100, 1989.
- Lagaye, S., Vexiau, P., Morozov, V., et al.: Human spumaretrovirus-related sequences in the DNA of leukocytes from patients with Graves' disease. *Proc. Natl. Acad. Sci.* (USA), 89:10070-10074, 1992.
- Wick, G., Grubeck-Loebenstein, B., Trieb, K., et al.: Human foamy virus antigens in thyroid tissue of Graves' disease patients. *Int. Arch. Allergy Immunol.*, 99:153-156, 1992.
- Tomer, Y. and Davies, T.F.: Infections and autoimmune endocrine disease. *Baillieres Clin. Endocrinol. Metab.*, 9:47-70, 1995.
- 25. Ito, M., Tanimoto, M., Kamura, H., et al.: Association

of HLA antigen and restriction fragment length polymorphism of T-cell receptor β-chain gene with Graves' disease and Hashimoto's thyroiditis. J. Clin. Endocrinol. Metab., 69:100-104, 1989.

- Barbesino, G., Tomer, Y., Concepcion, E., et al.: International consortium for the genetics of autoimmune thyroid disease: Linkage analysis of candidate genes in autoimmune thyroid disease: 1. Selected immunoregulatory genes. J. Clin. Endocrinol. Metab., 83: 1580-1584, 1998.
- Tomoyose, T., Komiya, I., Takaram M., et al.: Cytotoxic T-lymphocyte antigen-4 gene polymorphisms and human T-cell lymphotrophic virus-1 infection: their associations with Hashimoto's thyroiditis in Japanese patients. *Thyroid*, 12:673-677, 2002.
- Nagai, M., Usuku, K., Matsumoto, W., et al.: Analysis of HTLV-I proviral load in 202 HAM/TSP patients and 243 asymptomatic HTLV-I carriers: high proviral load strongly predisposes to HAM/TSP. J. Neurovirol., 4:586-593, 1998.
- 29. Matsuda, T., Tomita, M., Uchihara, J.-N., et al.: Human T-cell leukemia virus type I-infected patients with Hashimoto's thyroiditis and Graves' disease. J. Clin. Endocrinol. Metab., 10:5704-5710, 2005.
- Ono, A., Mochizuki, M., Yamaguchi, K., et al.: Increased number of circulating HTLV-I infected cells in peripheral blood mononuclear cells of HTLV-1 uveitis patients: a quantitative polymerase chain reaction study. *Br. J. Ophthalmol.*, 79:270-276, 1995.
- Yakova, M., Lezin, A., Dantin, F., et al.: Increased proviral load in HTLV-1-infected patients with rheumatoid arthritis or connective tissue disease. *Retrovir*ology, 2:4-12, 2005.